Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells.
نویسندگان
چکیده
Previous studies showed that long-wave ultraviolet (UVA) radiation induces severe skin damage through the generation of reactive oxygen species and the depletion of endogenous antioxidant systems. Recent results from our laboratory indicate a dramatic increase of both lipid peroxidation products (TBARS) and abnormal L-isoaspartyl residues, marker of protein damage, in UVA-irradiated human melanoma cells. In this study, the effects of hydroxytyrosol (DOPET), the major antioxidant compound present in olive oil, on UVA-induced cell damages, have been investigated, using a human melanoma cell line (M14) as a model system. In UVA-irradiated M14 cells, a protective effect of DOPET in preventing the uprise of typical markers of oxidative stress, such as TBARS and 2'7'-dichlorofluorescein (DCF) fluorescence intensity, was observed. In addition, DOPET prevents the increase of altered L-isoAsp residues induced by UVA irradiation. These protective effects are dose dependent, reaching the maximum at 400 microM DOPET. At higher concentrations, DOPET causes an arrest of M14 cell proliferation and acts as a proapoptotic stimulus by activating caspase-3 activity. In the investigated model system, DOPET is quantitatively converted into its methylated derivative, endowed with a radical scavenging ability comparable to that of its parent compound. These findings are in line with the hypothesis that the oxidative stress plays a major role in mediating the UVA-induced protein damage. Results suggest that DOPET may exerts differential effects on melanoma cells according to the dose employed and this must always be taken into account when olive oil-derived large consumer products, including cosmetics and functional foods, are employed.
منابع مشابه
Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells
Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work,...
متن کاملDual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PC12 cells.
Hydroxytyrosol (3,4-dihydroxyphenylethanol, HT), a major polyphenol in olive oils, has received increasing attention due to its multiple pharmacological activities. However, it is not well understood how HT works on the neuronal system. We report herein that HT efficiently scavenges free radicals in vitro and displays cytoprotection against oxidative stress-induced damage in PC12 cells. HT comp...
متن کاملHydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo.
UNLABELLED Elevated oxidative and nitrosative stress both impair the integrity and functioning of brain tissue, especially in aging. As long-term intake of plant foods rich in antioxidant phenolics, such as extra virgin olive oil, positively modulates surrogate markers of many human pathological alterations, the interest in cheap and abundant sources of such phenolics is rapidly growing. Olive ...
متن کاملInhibitory and synergistic effects of natural olive phenols on human platelet aggregation and lipid peroxidation of microsomes from vitamin E-deficient rats.
PURPOSE This study explored the in vitro antioxidant and anti-platelet activities of hydroxytyrosol, hydroxytyrosol acetate, 3,4-dihydroxyphenylglycol and two phenolic olive extracts. These compounds and extracts were obtained from a new industrial process to hydrothermally treat the alperujo (160 °C/60 min), a by-product of olive oil extraction. METHODS The extracts and the purified compound...
متن کاملOlive oil phenolics: effects on DNA oxidation and redox enzyme mRNA in prostate cells.
Hydroxytyrosol, tyrosol and caffeic acid effects on hydrogen peroxide-induced DNA damage, hydroperoxide generation and redox enzyme gene expression were studied in oxidative-stress-sensitive human prostate cells (PC3). Hydroxytyrosol led to lower levels of hydroperoxides, DNA damage, and mRNA levels of classic glutathione peroxidase (GPx) for all the studied concentrations. Only hydroxytyrosol ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Free radical biology & medicine
دوره 38 7 شماره
صفحات -
تاریخ انتشار 2005